Auto-Math
Si \(A\), \(B\) et \(C\) sont des ensembles, alors \((A\cap B)\setminus C=\)
\((A\setminus C)\cap (B\setminus C)\)
\(\emptyset\)
\(A\cap (B\setminus C)\)
\(C\setminus (A\cap B)\)
Parmi les notations suivantes, indiquez celle qui a du sens.
\(\mathbb{R}\supset 1\)
\(1\subset\mathbb{R}\)
\(1\in\mathbb{R}\)
\(1\setminus\mathbb{R}\)
Soit \(A=\{0, 2, 4, 6\}\) et \(B=\{0, 2, 4\}\). Parmi les propositions suivantes, indiquez celle qui est correcte.
\(A\setminus B=\{0, 2, 4\}\)
\(A\cup B=\mathbb{R}\)
\(2\in A\cap B\)
\(A\cap B=\emptyset\)
Parmi les ensembles suivants, lesquels déterminent l'ensemble vide ?
\(A = \{x\in\mathbb{N}\, :\, n^2=n\}\), \(B = \{x\in\mathbb{R}\, :\, x^2=9\mbox{ et }2x=4\}\), \(C = \{x\in\mathbb{R}\, :\, x+8=8\}.\)
\(B\mbox{ et } C\)
\(A\)
\(C\)
\(B\)
\(\{1\}\in\mathbb{R}\)
\(\{1\}\subset\mathbb{R}\)
\(1\subset \mathbb{R}\setminus\mathbb{R}^-\)
\(\mathbb{R}\setminus 1\)
Soit A l'ensemble des entiers pairs strictement positifs et B l'ensemble des entiers pairs strictement négatifs. Choisissez la proposition correcte.
\(\forall x\in\mathbb{R}\, :\, x\in B\)
\(\exists\, x\in B\, :\, x\in A\)
\(\exists\, x\in\mathbb{R}\, :\, x\in A\)
\(\forall x\in A\, :\, x\in B\)
Ecrivez le nombre 0,4356767676... sous forme de fraction.
\(\dfrac{43132}{99000}\)
\(\dfrac{43567}{99}\)
\(\dfrac{43567}{99999}\)
\(\dfrac{43132}{99999}\)
Si \(A\), \(B\) et \(C\) sont des ensembles, alors \((A\setminus B)\setminus C=\)
\(A\setminus (B\setminus C)\)
\(A\setminus (B\cap C)\)
\(A\setminus (B\cup C)\)
La proposition \("A\subset B\Longrightarrow \exists\, b\in B\, :\, b\not\in A"\) est
vraie
fausse
je ne sais pas
Parmi les ensembles suivants, quels sont ceux qui sont sous-ensembles propres des autres ? \(Q =\{\text{quadrilatères}\}\), \(R =\{\text{rectangles}\}\), \( C =\{\text{carrés\}}\), \(P =\{\text{parallélogrammes\}}\).
\(Q\subset P\subset R\subset C\)
\(Q\subset P\)
\(R\subset C\)
\(C\subset R\subset P\subset Q\)