Auto-Math
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\forall x\in A\, :\, x\in B\)" est-elle vraie ou fausse ?
Vrai
Faux
Je ne sais pas
Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples \(P\) et \(Q\) que vous utilisez. "6 < 2 est une condition suffisante pour que 1 = 2.''
La négation de la proposition "Les trois nombres réels a, b et c sont négatifs'' est
Il y a au moins un des trois nombres réels a, b ou c qui est positif
Les trois nombres réels a, b et c sont positifs
Aucun des trois nombres réels a, b et c n'est négatif
Il y a au moins un des trois nombres réels a, b ou c qui est nul
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\forall x\in A,\forall y\in B\, :\, x=y\)" est-elle vraie ou fausse ?
La traduction mathématique de la proposition "Si a et b sont deux entiers naturels, il existe un multiple de a qui est supérieur à b'' est
\(\forall a\in\mathbb{N},\, \forall b\in\mathbb{N}, \exists\, k\in\mathbb{N}\, :\, ka\leq b\)
\(\exists\, k\in\mathbb{N},\, \forall a\in\mathbb{N},\, \forall b\in\mathbb{N}\, :\, ka\geq b\)
\(\forall a\in\mathbb{N},\, \forall b\in\mathbb{N}, \exists\, k\in\mathbb{N}\, :\, ka\geq b\)
\(\forall a\in\mathbb{N},\, \exists\, b\in\mathbb{N}\, :\, a\geq b\)
La contraposée de "Si f est dérivable alors f est continue'' est
f est continue si et seulement si f est dérivable
Si f est dérivable alors f n'est pas continue
Si f est continue alors f est dérivable
Si f n'est pas continue alors f n'est pas dérivable
La négation de la proposition "Les ensembles \(A\) et \(B\) ont au moins un élément en commun" est
\(\exists\, x\, :\, x\in (A\cap B)\)
\(A\cap B=\{x\}\)
\(A\cup B=\emptyset\)
\(A\cap B=\emptyset\)
"\(P\Leftrightarrow Q\)" n'est pas équivalente à
\(Q\Leftrightarrow P\)
\(\neg P\Leftrightarrow\neg Q\)
\((P\Rightarrow Q)\wedge (Q\Rightarrow P)\)
\((P\Rightarrow Q)\vee(Q\Rightarrow P)\)
La négation de la proposition "Aucun élève de la classe n'est absent'' est
Tous les élèves de la classe sont présents
Tous les élèves de la classe sont absents
Il y a des élèves de la classe qui sont absents
Aucun élève de la classe n'est présent
La négation de la proposition "\(\forall x\in\mathbb{R}_0\, :\, \frac{1}{x}\in\mathbb{R}_0\)" est
\(\forall x\not\in\mathbb{R}_0\, :\, \frac{1}{x}\neq 0\)
\(\exists\, x\in\mathbb{R}_0\, :\, \frac{1}{x}\neq 0\)
\(\exists\, x\not\in\mathbb{R}_0\, :\, \frac{1}{x}\not\in\mathbb{R}_0\)
\(\exists\, x\in\mathbb{R}_0\, :\, \frac{1}{x}=0\)