Auto-Math
L'implication "\(P\Rightarrow Q\)" signifie
P est suffisante pour Q
P est nécessaire pour Q
Q est suffisante pour P
P et Q sont équivalentes
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\forall x\in B\, :\, x\in A\)" est-elle vraie ou fausse ?
Vrai
Faux
Je ne sais pas
La négation de la proposition "\( \forall x\in\mathbb{N},\, \forall y\in\mathbb{N}\, :\, x+y>0\)" est
\(\exists\, x\in\mathbb{N},\, \exists\, y\in\mathbb{N}\, :\, x+y<0\)
\(\exists\, x\in\mathbb{N},\, \exists\, y\in\mathbb{N}\, :\, x+y\leq 0\)
\(\forall x\in\mathbb{N},\, \forall y\in\mathbb{N}\, :\, x+y<0\)
\(\exists\, x\not\in\mathbb{N},\, \exists\, y\not\in\mathbb{N}\, :\, x+y\leq 0\)
Pour quelles valeurs de vérité de P et Q la proposition "\((P\wedge Q)\Rightarrow (P\vee Q)\)" est-elle fausse ?
P vraie et Q fausse
P fausse et Q vraie
toujours fausse
jamais fausse
Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples \(P\) et \(Q\) que vous utilisez. "Il faut que 2+2=9 pour que 5 = 5."
Soit \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : "\(\exists\, x\in B,\, \exists\, y\in B,\, \forall z\in B\, :\, x^ 2+y^2<2z^ 2\)"?
La proposition "\(((P\Rightarrow Q)\wedge (Q\Rightarrow R))\Rightarrow (P\Rightarrow R)\)" est une tautologie.
La traduction mathématique de la proposition "Il y a des entiers qui ne sont pas naturels" est
\(\exists\, x\in\mathbb{N}\, :\, x\not\in\mathbb{Z}\)
\(\mathbb{N}\setminus\mathbb{Z}\neq\emptyset\)
\(\mathbb{N}\cap\mathbb{Z}=\emptyset\)
\(\mathbb{Z}\setminus\mathbb{N}\neq\emptyset\)
"\(P\Leftrightarrow Q\)" n'est pas équivalente à
\(Q\Leftrightarrow P\)
\(\neg P\Leftrightarrow\neg Q\)
\((P\Rightarrow Q)\wedge (Q\Rightarrow P)\)
\((P\Rightarrow Q)\vee(Q\Rightarrow P)\)
La contraposée de "\(x\in\mathbb{N}\Rightarrow x\geq 0\)" est
\(x\geq 0\Rightarrow x\in\mathbb{N}\)
\(x\in\mathbb{N}\Leftrightarrow x\geq 0\)
\(x<0\Rightarrow x\not\in\mathbb{N}\)
\(x\not\in\mathbb{N}\Rightarrow x<0\)