Auto-Math
Si \(A\) et \(B\) sont des ensembles, alors \(\overline{A\cap B}=\)
\(\overline{A}\cup\overline{B}\)
\(\overline{A}\cap\overline{B}\)
\(A\cup B\)
impossible
Parmi les ensembles suivants, lesquels déterminent l'ensemble vide ?
\(A = \{x\in\mathbb{N}\, :\, n^2=n\}\), \(B = \{x\in\mathbb{R}\, :\, x^2=9\mbox{ et }2x=4\}\), \(C = \{x\in\mathbb{R}\, :\, x+8=8\}.\)
\(B\mbox{ et } C\)
\(A\)
\(C\)
\(B\)
Soit \(A\) l'ensemble des entiers pairs strictement positifs et \(B\) l'ensemble des entiers pairs strictement négatifs. Choisissez la proposition correcte.
\(4\in B\setminus A\)
\(A\cap B=\{0\}\)
\(A\cup B=\mathbb{R}\)
\(A\cap B=\emptyset\)
Parmi les notations suivantes, indiquez celle qui a du sens.
\(2=\{2\}\)
\(2\in\{2\}\)
\(2\supset\{2\}\)
\(2\subset\{2\}\)
Si \(A\), \(B\) et \(C\) sont des ensembles, alors \((A\cap B)\setminus C=\)
\((A\setminus C)\cap (B\setminus C)\)
\(\emptyset\)
\(A\cap (B\setminus C)\)
\(C\setminus (A\cap B)\)
Si \(A\), \(B\) et \(C\) sont des ensembles, alors \((A\cup B)\setminus C=\)
\(C\setminus (A\cup B)\)
\((A\setminus C)\cup (B\setminus C)\)
\(A\cup (B\setminus C)\)
Soit \(A=\{0, 2, 4, 6\}\) et \(B=\{0, 2, 4\}\). Parmi les propositions suivantes, indiquez celle qui est correcte.
\(6\subset A\)
\(A\subset B\)
\(6\in A\cap B\)
\(6\in A\setminus B\)
Si \(A\), \(B\) et \(C\) sont des ensembles, alors \((A\setminus B)\setminus C=\)
\(A\setminus (B\setminus C)\)
\(A\setminus (B\cap C)\)
\(A\setminus (B\cup C)\)
Soit A l'ensemble des entiers pairs strictement positifs et B l'ensemble des entiers pairs strictement négatifs. Choisissez la proposition correcte.
\(\forall x\in\mathbb{R}\, :\, x\in B\)
\(\exists\, x\in B\, :\, x\in A\)
\(\exists\, x\in\mathbb{R}\, :\, x\in A\)
\(\forall x\in A\, :\, x\in B\)
A l'université sont organisés des cours libres d'anglais, d'économie et de statistique. Sachant que 122 étudiants suivent le cours d'anglais, 81 celui d'économie, 14 celui de statistique, 10 ceux d'anglais et d'économie, 6 ceux d'anglais et de statistique, 11 ceux de statistique et d'économie et enfin, 4 étudiants suivent les 3 cours, combien d'étudiants suivent le seul cours de statistique ?
21
3
31
1