Auto-Math
Parmi les notations suivantes, indiquez celle qui a du sens.
\(2=\{2\}\)
\(2\in\{2\}\)
\(2\supset\{2\}\)
\(2\subset\{2\}\)
\(\{1\}\in\mathbb{R}\)
\(\{1\}\subset\mathbb{R}\)
\(1\subset \mathbb{R}\setminus\mathbb{R}^-\)
\(\mathbb{R}\setminus 1\)
Si \(A\), \(B\) et \(C\) sont des ensembles, alors \((A\cup B)\setminus C=\)
\(C\setminus (A\cup B)\)
\((A\setminus C)\cup (B\setminus C)\)
\(A\cup (B\setminus C)\)
\(\emptyset\)
A l'université sont organisés des cours libres d'anglais, d'économie et de statistique. Sachant que 122 étudiants suivent le cours d'anglais, 81 celui d'économie, 14 celui de statistique, 10 ceux d'anglais et d'économie, 6 ceux d'anglais et de statistique, 11 ceux de statistique et d'économie et enfin, 4 étudiants suivent les 3 cours, combien d'étudiants suivent le seul cours de statistique ?
21
3
31
1
Une compagnie emploie 420 ouvriers, dont 240 se voient gratifier d'une augmentation, 115 reçoivent une promotion et 60 ont les deux. Combien d'ouvriers ne reçoivent ni augmentation, ni promotion ?
5
65
125
360
Soit \(A=\{0, 2, 4, 6\}\) et \(B=\{0, 2, 4\}\). Parmi les propositions suivantes, indiquez celle qui est correcte.
\(A\setminus B=\{0, 2, 4\}\)
\(A\cup B=\mathbb{R}\)
\(2\in A\cap B\)
\(A\cap B=\emptyset\)
Parmi les ensembles suivants, lesquels déterminent l'ensemble vide ?
\(A = \{x\in\mathbb{N}\, :\, n^2=n\}\), \(B = \{x\in\mathbb{R}\, :\, x^2=9\mbox{ et }2x=4\}\), \(C = \{x\in\mathbb{R}\, :\, x+8=8\}.\)
\(B\mbox{ et } C\)
\(A\)
\(C\)
\(B\)
Parmi les ensembles suivants, quels sont ceux qui sont sous-ensembles propres des autres ? \(Q =\{\text{quadrilatères}\}\), \(R =\{\text{rectangles}\}\), \( C =\{\text{carrés\}}\), \(P =\{\text{parallélogrammes\}}\).
\(Q\subset P\subset R\subset C\)
\(Q\subset P\)
\(R\subset C\)
\(C\subset R\subset P\subset Q\)
\(\mathbb{R}\supset 1\)
\(1\subset\mathbb{R}\)
\(1\in\mathbb{R}\)
\(1\setminus\mathbb{R}\)
Si \(A\) et \(B\) sont des ensembles, alors \(\overline{A\cup B}=\)
\(\overline{A}\cup\overline{B}\)
\(\overline{A}\cap\overline{B}\)
\(A\cap B\)
\(\mathbb{R}\)