Auto-Math
La négation de la proposition "Aucun élève de la classe n'est absent'' est
Tous les élèves de la classe sont présents
Tous les élèves de la classe sont absents
Il y a des élèves de la classe qui sont absents
Aucun élève de la classe n'est présent
L'implication "\(P\Rightarrow Q\)" signifie
P est suffisante pour Q
P est nécessaire pour Q
Q est suffisante pour P
P et Q sont équivalentes
La contraposée de "Si f est dérivable alors f est continue'' est
f est continue si et seulement si f est dérivable
Si f est dérivable alors f n'est pas continue
Si f est continue alors f est dérivable
Si f n'est pas continue alors f n'est pas dérivable
La proposition "\(((P\wedge Q)\vee R)\Leftrightarrow(P\wedge(Q\vee R))\)" est une tautologie.
Vrai
Faux
Je ne sais pas
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\forall x\in B\, :\, x\in A\)" est-elle vraie ou fausse ?
La réciproque de "Si f est dérivable alors f est continue" est
f est dérivable et pas continue
Soit \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : "\(\forall x\in B,\, \exists\, y\in B\, :\, x^ 2+y^2<12\)" ?
Pour quelles valeurs de vérité de P et Q la proposition "\((P\wedge Q)\Rightarrow (P\vee Q)\)" est-elle fausse ?
P vraie et Q fausse
P fausse et Q vraie
toujours fausse
jamais fausse
Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples \(P\) et \(Q\) que vous utilisez. "Il faut que 2+2=9 pour que 5 = 5."
La négation de la proposition "Tous les éléments de l'ensemble A sont des réels positifs" est
\(\exists\, x\in A\, :\, x<0\)
\(\exists\, x\in A\, :\, x=0\)
\(\forall x\in A\, :\, x<0\)
\(\exists\, x\not\in A\, :\, x\in\mathbb{R}^-\)