Auto-Math
Si \(A\) et \(B\) sont des ensembles, alors \(\overline{A\cap B}=\)
\(\overline{A}\cup\overline{B}\)
\(\overline{A}\cap\overline{B}\)
\(A\cup B\)
impossible
La proposition \("A\subseteq B\Longleftrightarrow \forall b\in B\, :\, b\in A"\) est
vraie
fausse
je ne sais pas
Soit A l'ensemble des entiers pairs strictement positifs et B l'ensemble des entiers pairs strictement négatifs. Choisissez la proposition correcte.
\(\forall x\in\mathbb{R}\, :\, x\in B\)
\(\exists\, x\in B\, :\, x\in A\)
\(\exists\, x\in\mathbb{R}\, :\, x\in A\)
\(\forall x\in A\, :\, x\in B\)
Ecrivez le nombre 0,4356767676... sous forme de fraction.
\(\dfrac{43132}{99000}\)
\(\dfrac{43567}{99}\)
\(\dfrac{43567}{99999}\)
\(\dfrac{43132}{99999}\)
Soit \(A=\{0, 2, 4, 6\}\) et \(B=\{0, 2, 4\}\). Parmi les propositions suivantes, indiquez celle qui est correcte.
\(6\subset A\)
\(A\subset B\)
\(6\in A\cap B\)
\(6\in A\setminus B\)
\(A\setminus B=\{0, 2, 4\}\)
\(A\cup B=\mathbb{R}\)
\(2\in A\cap B\)
\(A\cap B=\emptyset\)
Si \(A\), \(B\) et \(C\) sont des ensembles, alors \((A\cup B)\setminus C=\)
\(C\setminus (A\cup B)\)
\((A\setminus C)\cup (B\setminus C)\)
\(A\cup (B\setminus C)\)
\(\emptyset\)
La proposition \("A\subseteq B\Longleftrightarrow \forall b\in A\, :\, b\in B"\) est
Parmi les notations suivantes, indiquez celle qui a du sens.
\(\mathbb{R}\supset 1\)
\(1\subset\mathbb{R}\)
\(1\in\mathbb{R}\)
\(1\setminus\mathbb{R}\)
\(\{1\}\in\mathbb{R}\)
\(\{1\}\subset\mathbb{R}\)
\(1\subset \mathbb{R}\setminus\mathbb{R}^-\)
\(\mathbb{R}\setminus 1\)