Droites : Test de niveau 2

 Donnez l'équation cartésienne de la droite \(D\) parallèle à \(D' : 3x+y+8=0\) et passant par \((2,-3)\).

Soit D' une droite de pente \(-1/2\) et passant par \((1,2)\). Donnez l'équation cartésienne de la droite \(D\) parallèle à \(D'\) et passant par \((-1,0)\).

Donnez l'équation cartésienne de la droite \(D\) perpendiculaire à  \(D' : 2y-x+1=0\) et passant par (1,4).

Soit \(D_1 : 2mx+(m-3)y+1=0\) et \(D_2 : mx+y=p\). Trouvez \(m\) et \(p\) pour que \(D_1\) soit parallèle à \(D_2\).

Soit \(D\) la droite d'équation \(3ax-(a+1)y-2=0\). Trouvez a pour que cette droite soit parallèle à l'axe \(Oy\).

Donnez l'équation de la médiatrice du segment joignant les points (2,5) et (4,7).

Soit \(D'\) la droite passant par (0,6) et (1,11). Donnez l'équation cartésienne de la droite  \(D\) perpendiculaire à  \(D'\) et passant par (5,2).

La droite passant par \(P=(5,-7)\) qui est parallèle à la droite \(D' : 6x+3y=4\) a pour équation

La droite passant par \(P=(5,-7)\) qui est perpendiculaire à la droite \(D' : 6x+3y=4\) a pour équation

Donnez l'équation cartésienne de la droite \(D\) parallèle à \(D'\) et passant par \((2,-3)\), avec \((5,4) \in D'\) et \((6,2) \in D'\).