Auto-Math
La parabole \(y=-4x^2+9\) coupe l'axe OY en
\((0,9)\)
\((9,0)\)
\((\frac{3}{2},0)\mbox{ et }(-\frac{3}{2},0)\)
ne coupe pas l'axe
La parabole \(y=4x^2+9\) coupe l'axe OX en
\((-\frac{3}{2},0)\)
La parabole \(y=-x^2-4\) coupe l'axe OX en
(4,0)
(0,-4)
(2,0) et (-2,0)
La parabole \(y=4x^2+20x+25\) coupe l'axe OY en
(25,0)
(5,0)
(0,25)
Parmi les points suivants, lequel appartient à la parabole \(y=-2x^2+x-1\) ?
(-1,-4)
(1,1)
(0,1)
(-2,-7)
Le sommet de la parabole \(y=4x^2+20x+25\) est
\((5,225)\)
\((0,25)\)
\((-\frac{5}{2},0)\)
\((\frac{5}{2},100)\)
La parabole \(y=x^2-4x+7\) coupe l'axe OX au point
(3,0)
(0,7)
(0,-7)
La parabole \(y=2x^2-x-1\) coupe l'axe OY en
\((-1,0)\)
\((1,0)\mbox{ et }(-\frac{1}{2},0)\)
\((0,-1)\)
La parabole \(y=-4x^2+9\) a pour axe de symétrie
\(x=-\frac{3}{2}\)
\(y=0\)
\(x=\frac{3}{2}\)
\(x=0\)
La parabole \(y=4x^2+20x+25\) a pour axe de symétrie
\(y=-\frac{5}{2}\)
\(x=-\frac{5}{2}\)
\(x=-\frac{2}{5}\)
\(x=-5\)