Auto-Math
Soit \(A=\{0,2,4,6\}\) et \(B=\{0,2,4\}\). Quelle est la proposition correcte ?
\(\forall x\in A\, :\, x\in B\)
\(\exists\, x\in B\, :\, x\in A\)
\(\forall x\in\mathbb{R}\, :\, x\in A\)
\(\forall x\in \mathbb{R}\, :\, x\in (A\cap B)\)
La négation de la proposition "\(x\geq 5\)" est
\(x\leq 4 \)
\(x\leq 5\)
\(x>5\)
\(x<5\)
Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples P et Q que vous utilisez. "Paris est en Angleterre ou Londres est en France.''
Vrai
Faux
Je ne sais pas
Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples P et Q que vous utilisez. "Si 3 + 2 = 7, alors 4 + 4 = 8."
La contraposée de "\(x\in\mathbb{N}\Rightarrow x\in\mathbb{R}\)" est
\(x\not\in\mathbb{R}\Rightarrow x\in\mathbb{N}\)
\(x\in\mathbb{R}\Rightarrow x\in\mathbb{N}\)
\(x\not\in\mathbb{R}\Rightarrow x\not\in\mathbb{N}\)
\(x\in\mathbb{N}\Rightarrow x\not\in\mathbb{R}\)
La traduction mathématique de la proposition "Les ensembles A et B ont au moins un élément en commun" est
\(A\cap B\neq\emptyset\)
\(A\cup B\neq\emptyset\)
\(A\cap B=\emptyset\)
\(A\setminus B\neq\emptyset\)
La proposition "\(\forall a\in\mathbb{N},\, \forall b\in\mathbb{N}\, :\, a-b\in\mathbb{N}\)" est-elle vraie ou fausse ?
Pour quelles valeurs de vérité de \(P\) et \(Q\) la proposition "\((P\wedge Q)\wedge Q\)" est-elle vraie ?
P vraie et Q fausse
P vraie et Q vraie
P fausse et Q vraie
P fausse et Q fausse
Soit \(A=\{2,3,4,5,6,7,8,9\}\) et \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : \("\forall x\in A\, :\, x^ 2>1"\)?
Soit \(A=\{2,3,4,5,6,7,8,9\}\) et \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : \("\exists\, x\in A\, :\, x+7<10"\)?