Auto-Math
La proposition "\(\forall a\in\mathbb{N},\, \forall b\in\mathbb{N}\, :\, a-b\in\mathbb{N}\)" est-elle vraie ou fausse ?
Vrai
Faux
Je ne sais pas
La proposition "\(\neg (P\vee Q)\Leftrightarrow(\neg P\wedge \neg Q)\)'' est une tautologie.
Pour quelles valeurs de vérité de \(P\) et \(Q\) la proposition "\((P\wedge Q)\wedge Q\)" est-elle vraie ?
P vraie et Q fausse
P vraie et Q vraie
P fausse et Q vraie
P fausse et Q fausse
La négation de la proposition "\(\forall x\in\mathbb{N}\, :\, x>1\)" est
\(\exists\, x\not\in\mathbb{N}\, :\, x\leq 1\)
\(\exists\, x\in\mathbb{N}\, :\, x\leq 1\)
\(\forall x\in\mathbb{N}\, :\, x\leq 1\)
\(\exists\, x\in\mathbb{N}\, :\, x< 1\)
La traduction mathématique de la proposition "Tout nombre naturel est un entier" est
\(\mathbb{Z}\subset\mathbb{N}\)
\(\forall x\in\mathbb{Z}\, :\, x\in\mathbb{N}\)
\(\mathbb{N}\subset\mathbb{Z}\)
\(\forall x\, :\, \mathbb{N}\cap\mathbb{Z}=\{x\}\)
La contraposée de "\(x\in\mathbb{N}\Rightarrow x\in\mathbb{R}\)" est
\(x\not\in\mathbb{R}\Rightarrow x\in\mathbb{N}\)
\(x\in\mathbb{R}\Rightarrow x\in\mathbb{N}\)
\(x\not\in\mathbb{R}\Rightarrow x\not\in\mathbb{N}\)
\(x\in\mathbb{N}\Rightarrow x\not\in\mathbb{R}\)
Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples P et Q que vous utilisez. "Si 3 + 2 = 7, alors 4 + 4 = 8."
La négation de la proposition "\(x\geq 5\)" est
\(x\leq 4 \)
\(x\leq 5\)
\(x>5\)
\(x<5\)
Soit \(A=\{2,3,4,5,6,7,8,9\}\) et \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : \("\exists\, x\in A\, :\, x+7<10"\)?
La traduction mathématique de la proposition "Les ensembles A et B ont au moins un élément en commun" est
\(A\cap B\neq\emptyset\)
\(A\cup B\neq\emptyset\)
\(A\cap B=\emptyset\)
\(A\setminus B\neq\emptyset\)