Auto-Math
La proposition \("A\subseteq B\Longleftrightarrow \forall b\in B\, :\, b\in A"\) est
vraie
fausse
je ne sais pas
Soit \(A=\{0, 2, 4, 6\}\) et \(B=\{0, 2, 4\}\). Parmi les propositions suivantes, indiquez celle qui est correcte.
\(6\subset A\)
\(A\subset B\)
\(6\in A\cap B\)
\(6\in A\setminus B\)
Parmi les ensembles suivants, quels sont ceux qui sont sous-ensembles propres des autres ? \(Q =\{\text{quadrilatères}\}\), \(R =\{\text{rectangles}\}\), \( C =\{\text{carrés\}}\), \(P =\{\text{parallélogrammes\}}\).
\(Q\subset P\subset R\subset C\)
\(Q\subset P\)
\(R\subset C\)
\(C\subset R\subset P\subset Q\)
Soit A l'ensemble des entiers pairs strictement positifs et B l'ensemble des entiers pairs strictement négatifs. Choisissez la proposition correcte.
\(\forall x\in\mathbb{R}\, :\, x\in B\)
\(\exists\, x\in B\, :\, x\in A\)
\(\exists\, x\in\mathbb{R}\, :\, x\in A\)
\(\forall x\in A\, :\, x\in B\)
\(A\setminus B=\{0, 2, 4\}\)
\(A\cup B=\mathbb{R}\)
\(2\in A\cap B\)
\(A\cap B=\emptyset\)
Parmi les notations suivantes, indiquez celle qui a du sens.
\(2=\{2\}\)
\(2\in\{2\}\)
\(2\supset\{2\}\)
\(2\subset\{2\}\)
Si \(A\) et \(B\) sont des ensembles, alors \(\overline{A\cap B}=\)
\(\overline{A}\cup\overline{B}\)
\(\overline{A}\cap\overline{B}\)
\(A\cup B\)
impossible
La proposition \("A\subseteq B\Longleftrightarrow \forall b\in A\, :\, b\in B"\) est
A l'université sont organisés des cours libres d'anglais, d'économie et de statistique. Sachant que 122 étudiants suivent le cours d'anglais, 81 celui d'économie, 14 celui de statistique, 10 ceux d'anglais et d'économie, 6 ceux d'anglais et de statistique, 11 ceux de statistique et d'économie et enfin, 4 étudiants suivent les 3 cours, combien d'étudiants suivent le seul cours de statistique ?
21
3
31
1
La proposition \("A\subset B\Longrightarrow \exists\, b\in B\, :\, b\not\in A"\) est