Auto-Math
Factorisez \(ax^8-a\)
\(a(x^4-1)^2\)
\(a(x^2-1)^4\)
\(a(x-1)(x+1)(x^2+1)(x^4+1)\)
\(a(x-1)^8\)
Factorisez \(2x^3-x^2-18x+9=\)
\((2x-3)^3\)
\((2x-1)(x^2+9)\)
\((x-9)(x+9)(6x+1)\)
\((2x-1)(x-3)(x+3)\)
Le reste de la division de \( x-x^3-1-2x^2\) par \(4+2x\) vaut
\(-\frac{1}{2}x^2+\frac{1}{2}\)
\(-2\)
\(0\)
\(-3\)
L'évaluation du polynôme \(P(x)= -3x^2+x-4\) en \(x=\frac{1}{2}\) vaut
\(-5\)
\(-\frac{17}{4}\)
\(-\frac{5}{2}\)
\(-\frac{9}{2}\)
La division de \( x^4-3x+3x^3-1\) par \( x^2-1\) est-elle exacte ?
oui
non
je ne sais pas
\((a^2-b)^3=\)
\(a^6-b^3\)
\((a^2-b)(a^4+a^2b+b^2)\)
\(a^5-3a^4b+3a^2b^2-b^3\)
\(a^6 -3a^4b+3a^2b^2-b^3\)
Effectuez \((x^4+\frac{a}{4})^2\)
\(x^8+\frac{a^2}{16}\)
\(x^8+\frac{a^2}{16}+\frac{1}{4}ax^4\)
\(x^{16}+\frac{a^2}{4}+\frac{1}{2}ax^4\)
\(x^8+\frac{a^2}{16}+\frac{1}{2}ax^4\)
\((x^2-1)^3=\)
\(x^6-1\)
\(-x^6+3x^4-3x^2+1\)
\(x^6-3x^4+3x^2-1\)
\(x^5-3x^4+3x^2-1\)
Factorisez \(x^8+y^8+x^4y^4\)
\((x^4+y^4-x^2y^2)(x^4+y^4+x^2y^2)\)
\((x^2-y^2)^2(x^2+y^2)^2\)
\(x^4(x^4+y^4)+y^8\)
impossible
Effectuez \(3x-(2x^2+3)-[(2x+3x^2)-x+1]-(x-2)\)
\(-5x^2+x\)
\(-5x^2+x-2\)
\(x^2-x+2\)
\(-5x^2+x-5\)