Auto-Math
\((a^2-b)^3=\)
\(a^6-b^3\)
\((a^2-b)(a^4+a^2b+b^2)\)
\(a^5-3a^4b+3a^2b^2-b^3\)
\(a^6 -3a^4b+3a^2b^2-b^3\)
\((x^2-1)^3=\)
\(x^6-1\)
\(-x^6+3x^4-3x^2+1\)
\(x^6-3x^4+3x^2-1\)
\(x^5-3x^4+3x^2-1\)
Le reste de la division de \( x-x^3-1-2x^2\) par \(4+2x\) vaut
\(-\frac{1}{2}x^2+\frac{1}{2}\)
\(-2\)
\(0\)
\(-3\)
Effectuez \((x^4+\frac{a}{4})^2\)
\(x^8+\frac{a^2}{16}\)
\(x^8+\frac{a^2}{16}+\frac{1}{4}ax^4\)
\(x^{16}+\frac{a^2}{4}+\frac{1}{2}ax^4\)
\(x^8+\frac{a^2}{16}+\frac{1}{2}ax^4\)
Le reste de la division de \(x^4-3x+3x^3-1\) par \(x^2-1\) est
\(-1\)
\(1\)
\(x^2+3x+1\)
Effectuez \((2x^4-3)^3\)
\(8x^{12}-36x^8+54x^4-27\)
\(8x^{12}-27\)
\(8x^7-36x^6+54x^4-27\)
\(8x^{12}+36x^8+54x^4+27\)
La division de \( x^4-3x+3x^3-1\) par \( x^2-1\) est-elle exacte ?
oui
non
je ne sais pas
Factorisez \(2x^3-x^2-18x+9=\)
\((2x-3)^3\)
\((2x-1)(x^2+9)\)
\((x-9)(x+9)(6x+1)\)
\((2x-1)(x-3)(x+3)\)
\((-x+2)(-x-2)=\)
\(x^2-4\)
\(4-x^2\)
\((x-4)^2\)
\(x^2+4\)
Effectuez \(3x-(2x^2+3)-[(2x+3x^2)-x+1]-(x-2)\)
\(-5x^2+x\)
\(-5x^2+x-2\)
\(x^2-x+2\)
\(-5x^2+x-5\)